

SUSPENSION OPTIMIZATION AND VEHICLE DYNAMICS ANALYSIS – EVALUATION OF STEP STEER AND SINGLE LANE CHANGE MANEUVERS USING ADAMS CAR

Student: Antonio Maria Macripò

ID: 189739

Exam date: 29/07/2024

ACADEMIC YEAR: 2023/2024

Summary

Introduction	4
1. Front and Rear Suspensions optimization: Generalities	
2. Front Suspensions Analysis: Baseline vs. Optimized Layout	
Toe Angle	
Camber Angle	
Roll Angle	
Caster Angle	
3. Rear Suspensions Analysis: Baseline vs. Optimized Layouts	
Toe Angle	
Camber Angle	
Roll Angle	
Caster Angle	
4. Full Vehicle Analysis: Generalities and Model Data	
5. Full Vehicle Analysis: Step Steer Maneuver	
Linear and Angular Displacements vs. Time	
Linear and Angular Velocities vs. Time	
Linear and Angular Accelerations vs. Time	
Linear and Angular Displacements vs. Lateral Acceleration	
Steering Angles vs. Lateral Acceleration	
Front and Rear Tire Forces vs. Time	
6. Step Steer Analysis - Comparison between two tires configu 34	
Linear and Angular Displacements vs. Time	34
Linear and Angular Velocities vs. Time	35
Linear and Angular Accelerations vs. Time	36
Linear and Angular Displacements vs. Lateral Acceleration	37
Steering Angle vs. Lateral Acceleration	38
Front and Rear Tire Forces vs. Time	38
7. Step Steer Analysis – Configuration with Rear Anti-Roll Ba	ar40
Linear and Angular Displacements vs. Time	40
Linear and Angular Velocities vs. Time	41
Linear and Angular Accelerations vs. Time	42
Linear and Angular Displacements vs. Lateral Acceleration	43

Steering Angle vs. Lateral Acceleration	43
Front and Rear Tire Force vs. Time	44
Roll Gradient vs. Time	45
8. Full Vehicle Analysis: Single Lane Change Maneuver	46
Linear and Angular Displacements vs. Time	46
Linear and Angular Velocities vs. Time	48
Linear and Angular Accelerations vs. Time	50
Linear and Angular Displacements vs. Lateral Acceleration	52
Steering Angle vs. Lateral Acceleration	54
Front and Rear Tire Forces vs. Time	54
9. Single Lane Change Analysis - Comparison between two tires configurations	: PAC89 vs.
PAC2002	56
Linear and Angular Displacements vs. Time	56
Linear and Angular Velocities vs. Time	57
Linear and Angular Accelerations vs. Time	58
Linear and Angular Displacements vs. Lateral Acceleration	60
Steering Angle vs. Lateral Acceleration	61
Front and Rear Tire Forces vs. Time	61
10. Single Lane Change Analysis - Configuration with Rear Anti-Roll Bar	63
Linear and Angular Displacements vs. Time	63
Linear and Angular Velocities vs. Time	64
Linear and Angular Accelerations vs. Time	66
Linear and Angular Displacements vs. Lateral Acceleration	67
Steering Angle vs. Lateral Acceleration	68
Front and Rear Tire Forces vs. Time	68
Roll Gradient vs. Time	69
Final Evaluations and Conclusions	71
References	71

Introduction

This report examines the optimization of various suspension parameters in a vehicle, focusing on **toe** angle, camber angle, and caster angle, which are crucial in determining the vehicle's handling characteristics and dynamic response:

- The **toe angle**, which refers to the wheels' inclination relative to the vehicle's centerline, directly affects directional stability and tire wear. Precise adjustment of the toe angle can improve steering accuracy and reduce rolling resistance.
- The **camber angle**, the tilt of the wheels relative to the vertical, is vital for maximizing tire contact with the road, thereby influencing grip, traction, and overall handling.
- The **caster angle**, defining the tilt of the steering axis relative to the vertical, is essential for straight-line stability and steering responsiveness, enhancing the driver's sense of control and safety.

This report aims to illustrate how minor adjustments to these parameters can significantly affect the vehicle's dynamics through detailed simulations using *Adams Car* software; it is an advanced tool for dynamic simulation, allowing engineers to create virtual vehicle models and perform comprehensive analyses without costly physical prototypes.

Specifically, the simulations include "Step Steer Analysis" and "Single Lane Change Analysis":

- The **Step Steer Analysis** involves applying a sudden input to the steering wheel and observing the vehicle's response, focusing on parameters such as steering-wheel angle, lateral acceleration, yaw rate, vehicle speed, and tire output. This test is crucial for evaluating the vehicle's stability and control in emergency situations or sudden maneuvers.
- The **Single Lane Change Analysis** simulates a rapid lane change maneuver at a constant speed. This test assesses the vehicle's ability to perform safe lane changes, critical for highway and multi-lane road driving. It examines the same parameters as the **Step Steer Analysis**, providing insights into the vehicle's handling of lateral forces during quick direction changes and identifying potential issues with maneuverability and stability.

Additionally, simulations with an **Anti-Roll Bar** are conducted to observe its impact on the dynamic behaviour of the vehicle. The **Anti-Roll Bar** reduces body roll during cornering, enhancing vehicle stability and handling.

1. Front and Rear Suspensions optimization: Generalities and Design of Experiment Analysis

First of all, it is important to set a procedure for characterizing **Front** and **Rear Suspension Parameters** to optimize vehicle handling performance using the **Opposite Wheel Travel Analysis**; it involves moving the left and the right wheels through equal, but opposite, vertical amounts of travel to simulate body roll. This is achieved by having the wheels undergo specified bounce and rebound travel, 180° out of phase with each other. Parameters for vertical wheel travel and the fixed steer value must be defined when submitting the analysis. The key quantities measured during this analysis are:

- Toe angle;
- Camber angle;
- Roll angle.

The main objectives to reach through this analysis are:

- To **minimize** the **maximum value** of the **toe angle** to improve the toe angle range and variation;
- To ensure that the optimized model for the toe angle also provides favorable results for **camber angle** variation.

For setting the suspensions' parameters for the **Opposite Wheel Travel Analysis**, an optimization through the **Design of Experiments (DOE) Analysis** is performed, in order to find the correct values of the following hardpoints, which make the previous objectives reachable:

- HP locations X, Y, Z (hpl/hpr tierod outer);
- HP location Z (hpl/hpr lca outer).

DOE is a systematic method for determining the relationship between factors affecting a process and the output of that process; it involves designing controlled tests to understand the effects of multiple variables and to identify the optimal conditions.

After performing **81 simulations** for the Front Suspensions, following the settings of the *figure 1*, one gets the result presented in the *figure 2*:

F	Factors Table (All)											
	abbreviation	name	type	settings	nominal value	distType	distParams	delta type	units	tolerance	ease	
1	lca_z	TR_Front_Su	Continuous	-10, 10	130	Uniform		Relative		0.0	Moderate	
2	tierod_x	TR_Front_Su	Continuous	-30, 30	417	Uniform		Relative		0.0	Moderate	
3	tierod_y	TR_Front_Su	Continuous	-10, 10	-750	Uniform		Relative		0.0	Moderate	
4	tierod_z	TR_Front_Su	Continuous	-10, 10	330	Uniform		Relative		0.0	Moderate	

Figure 1: Factors table and settings for the DOE Analysis for the Front Suspensions

Minimum and maximum for regression "OBJECTIVE_1"

	Minimum	Maximum
Response	2.7575	10.031
lca_z	140	120
tierod_x	447	387
tierod_y	-740	-760
tierod_z	320	340

Figure 2: DOE results for the Front Suspensions for minimizing the maximum value of the toe angle

Then, after performing **81 simulations** for the Rear Suspensions, following the settings of the *figure* **3**, one gets the result presented in the *figure* **4**:

Factors Table (All)											
	abbreviation	name	type	settings	nominal value	distType	distParams	delta type	units	tolerance	ease
1	lca_z	TR_Rear_Su	Continuous	-10, 10	190	Uniform		Relative		0.0	Moderate
2	tierod_x	TR_Rear_Su	Continuous	-30, 30	2977	Uniform		Relative		0.0	Moderate
3	tierod_y	TR_Rear_Su	Continuous	-10, 10	-750	Uniform		Relative		0.0	Moderate
4	tierod_z	TR_Rear_Su	Continuous	-10, 10	350	Uniform		Relative		0.0	Moderate

Figure 3: Factors table and settings for the DOE Analysis for the Rear Suspensions

Minimum and maximum for regression "OBJECTIVE_1" Minimum Maximum 3.0507 10.307 Response 200 180 lca_z 3007 2947 tierod_x -740 -740 tierod y 340 360 tierod_z

Figure 4: DOE results for the Rear Suspensions for minimizing the maximum value of the toe angle

From the previous figures, it is clear that, by using the values provided by the software for modifying the hardpoints, one can perform, for both the Front and Rear Suspensions, two Opposite Wheel Travel Analyses to compare the **Baseline Layout** and the **Optimized Layout**, in order to display the improvements in terms of vehicle's handling characteristics and dynamic response.

For summarizing:

• Front Suspensions Hardpoints:

```
"hpl_lca_outer" (Lower Control Arm Outer):
- loc_z changed from 130 mm to 140 mm.

"hpl_tierod_outer" (Tie Rod Outer):
- loc_x changed from 417 mm to 447 mm;
- loc_y changed from -750 mm to -740 mm;
- loc z changed from 330 mm to 320 mm.
```

• Rear Suspensions Hardpoints:

```
"hpl_lca_outer" (Lower Control Arm Outer):
- loc_z changed from 190 mm to 200 mm.

"hpl_tierod_outer" (Tie Rod Outer):
- loc_x changed from 2977 mm to 3007 mm;
- loc_y changed from -750 mm to -740 mm;
- loc_z changed from 350 mm to 340 mm.
```